Coordinación humana I

El sistema nervioso
1 EL SISTEMA NERVIOSO: ESTRUCTURA GENERAL

El sistema nervioso está formado por un tejido especializado en la recepción de estímulos y en la conducción de impulso a gran velocidad.

Se diferencia de todos los restantes sistemas corporales en un aspecto clave: sus células son capaces de transmitir información tanto del medio externo como interno del animal. Gracias a ello es capaz de coordinar la actividad mecánica y las glándulas.

Para llevar a cabo estas funciones, las células nerviosas denominadas neuronas están organizadas de tal forma que pueden transmitir, rápida y coordinadamente, los distintos tipos de información recibida, desde los receptores periféricos nerviosos (olfativos, gustativos, térmicos, auditivos, acústicos, etc.) a los efectores (músculos y glándulas), a través de vías específicas e incluso pueden combinar esa información elaborando respuestas complejas.

Flujo de información a través del sistema nervioso

Cuando un gato está hambriento, busca con qué alimentarse. La proximidad de un perro hace que una liebre se introduzca a toda prisa en su madriguera.

Todas estas acciones y un sinnúmero más, son posibles gracias al sistema nervioso, el cual da una respuesta, de forma secuencial, a cada una de ellas mediante un flujo de información (fig. 1) que puede establecerse en las siguientes fases:

- Estímulo: es cualquier factor físico o químico que es detectado por el organismo. Puede ser un sonido, un olor, etc.
- Recepción sensorial: se produce en los órganos receptores (ojos, oídos, nariz, etc.) en los que existen células especializadas en la captación de estímulos y en su conversión en corrientes nerviosas.
- Coordinación: se produce en aquellos órganos que reciben e interpretan la información que les llega desde los receptores sensoriales y luego envían los mensajes adecuados, también en forma de corriente nerviosa, a los órganos efectores. Los órganos de coordinación son el cerebro y la médula espinal.
- Respuesta: es toda reacción que aparece como consecuencia de un estímulo. Dicha respuesta se realiza por medio de un órgano efector (glándula o músculo).

Fig. 1. Esquema del flujo de información del sistema nervioso.

a) En ocasiones se ha comparado al sistema nervioso con un sistema telefónico o con una computadora. ¿Son correctas estas analogías?

b) Describe el flujo de información que se produce cuando un gato se encuentra frente a un perro.
Unidades básicas de los sistemas nerviosos

El tejido nervioso de la mayoría de los animales está constituido por dos tipos muy diferentes de células: las **neuronas** y las **células gliales**. Únicamente los invertebrados más simples poseen un sistema nervioso formado sólo por neuronas.

1.1. Neuronas

Las neuronas son las unidades funcionales esenciales del sistema nervioso, son las células especializadas en transmitir el impulso nervioso. Aunque unas y otras difieren entre sí, en la mayoría de ellas podemos distinguir:

- Un cuerpo celular o soma.
- Prolongaciones del cuerpo celular.

El **cuerpo celular** posee forma irregular y contiene, al igual que cualquier otra célula, los órganos celulares ya conocidos como mitocondrias, aparato de Golgi, etc. Posee un solo núcleo, generalmente en el centro.

El retículo endoplasmático rugoso, conocido como **corpusculos de Nissl**, está muy desarrollado, lo que indica que la síntesis proteica es intensa en este tipo de células.

Las **prolongaciones nerviosas** son de dos tipos: el **axón** y las **dendritas**. Estas últimas son cortas y de contorno rugoso, pudiendo tener cada cuerpo neuronal una o varias dendritas. El axón, único para cada neurona, tiene los bordes lisos y puede alcanzar gran longitud.

Su extremo se ramifica formando **fibras terminales** que acaban cerca de prolongaciones nerviosas, de cuerpos celulares o en órganos efectores como músculos y glándulas. Las zonas donde dos neuronas entran en contacto entre sí reciben el nombre de **sinapsis**.

La transmisión del impulso nervioso está polarizada de manera que se efectúa siempre en un sentido, yendo de un polo a otro de la célula.

 Transmitiéndose desde la dendrita al cuerpo neuronal y alejándose desde este hasta las terminaciones del axón.
Las neuronas difieren tanto en su forma como en el número de prolongaciones, sin embargo, funcionalmente podemos distinguir tres tipos de neuronas: neurona motora, interneurona y neurona sensitiva.

Neuronas sensitivas. Estas neuronas poseen un cuerpo celular, que como pueden comprobar en el dibujo sobresale al costado de un largo axón, sus dendritas acaban en los receptores sensitivos, que reciben información sensorial y la transmiten al sistema nervioso central (médula espinal y encéfalo). Son pues las que llevan mensajes desde los receptores externos hacia el interior.

Las neuronas motoras, poseen numerosas dendritas y un largo axón, conducen el impulso nervioso desde regiones del sistema nervioso central hacia los órganos efectores, tales como músculos o glándulas.

Las interneuronas poseen un cuerpo neuronal con numerosas dendritas y un corto axón. Son las más numerosas y su función consiste en conectar unas neuronas con otras.

Los axones de las neuronas pueden ser muy largos, por ejemplo, el axón de una neurona motora puede extenderse desde la médula espinal hasta un dedo del pie, el axón de una neurona sensitiva puede llegar también del dedo del pie hasta el cuerpo celular, situado fuera de la médula espinal y continuar hasta la base del cerebro donde acaba. Este recorrido en el hombre puede alcanzar hasta dos metros. Los axones reciben también el nombre de fibras nerviosas, los nervios son haces formados por muchos axones procedentes de muchas neuronas, cada axón es capaz de transmitir un mensaje separado, como los alambres en un cable del primitivo telegrafo.

1.2. Células de glia

Los sistemas nerviosos de vertebrados poseen también células distintas a las neuronas, son las células de glia. Estas células se llaman de neuroglía, cuando se encuentra en el interior del sistema nervioso central (médula espinal y encéfalo), y células de Schwann, cuando se encuentran fuera de él.

Aunque no se conoce perfectamente la función de las células gliales, si se sabe que desempeñan un papel de soporte, e intervienen en el intercambio de nutrientes entre la sangre y las neuronas. Los astrocitos, que aparecen en la siguiente fotografía son células de neuroglía, que reciben este nombre debido a su forma estrellada, sus prolongaciones forman una red tridimensional, que facilita las funciones de nutrición y soporte.

Microfotografía de astrocitos. Cortesía de Benjamin Fernández, Universidad Complutense de Madrid.

Las células de Schwann son células gliales que rodean los axones de las neuronas. En unos casos varios axones se encuentran materialmente emportados en las células de Schwann, estas prolongaciones así recubiertas reciben el nombre de fibras grises o amielínicas.

![Diagrama de células de Schwann](image)

Fibras no mielinizadas o fibras grises.

En otros casos, las células de Schwann están constituidas por una fina capa aislante de color blanco, la mielina, que forma pliegues y rodea al axón, para cubrir un axón son necesarias varias células de Schwann, el espacio entre estas células se detecta por unas depresiones observables en su superficie, que reciben el nombre de nodos de Ranvier. Las vainas de mielina no encierran en su interior más que un único axón, y dado que la mielina es de color blanco, estas prolongaciones reciben el nombre de fibras blancas o mielínicas.
Realiza una síntesis

1. Utilizando tus conocimientos elabora una tabla comparativa entre la comunicación nerviosa y la hormonal.

Reconócelos por sus definiciones

2. ¿A qué tipo de células corresponden las definiciones siguientes?
 a) Dan una información de un cierto lugar del cuerpo.
 b) Se encuentran en el sistema nervioso central, actúan de soporte de las neuronas y les aportan nutrientes.
 c) Dan órdenes para la contracción de un determinado músculo o la secreción de una glándula.
 d) Envuelven los axones de las neuronas.
 e) Conectan unas neuronas con otras y de esta forma procesan la información sensorial y controlan la motora.

Identifica y colorea

3. El dibujo del costado corresponde a una neurona motora. Identifica y colorea sus diferentes zonas. ¿Qué tipo de fibra posee esta neurona? ¿Cómo lo has reconocido? ¿Qué nos indican las flechas gruesas? Pon nombres a lo que representan las flechas finas.
2 Transmisión del impulso nervioso

Luigi Galvani descubrió, hace 200 años, que el paso de una corriente eléctrica a través de los nervios de un arco de rana producía la contracción de estos músculos y fue el primero que observó también la existencia de potenciales eléctricos en la materia viva. Desde entonces se ha atribuido una naturaleza eléctrica al impulso o corriente nerviosa.

Hace tiempo que se constató que en todas las células existe una diferencia de potencial eléctrico entre su exterior y su interior, es decir, que las dos caras de la membrana plasmática tienen distinta carga eléctrica.

El interior está cargado negativamente con respecto al exterior, debido a la distinta distribución de los iones. Para que este fenómeno ocurra, la membrana debe tener una permeabilidad selectiva, es decir, debe impedir la entrada o salida de determinados iones. Una neurona, como el resto de las células posee también esta característica, y por lo tanto, presenta una diferencia de potencial entre su exterior y su interior, esta diferencia de potencial llamado potencial de membrana en reposo, tiene un valor muy pequeño, aproximadamente de -70 milivoltios.

Cuando un axón se stimula se produce un cambio en el potencial eléctrico, el interior se carga positivamente con respecto al exterior y el valor del potencial de membrana se convierte en +50 milivoltios. Es decir, al transmitirse el impulso nervioso la membrana modifica su permeabilidad selectiva, los iones ahora pueden desplazarse en sentido contrario al primitivo a través de la membrana, y el resultado es una inversión de la carga eléctrica en una determinada longitud del axón.

Esta alteración o inversión del potencial eléctrico a través de la membrana plasmática de la neurona, que se propaga rápidamente a lo largo del axón, como indica la figura anterior, recibe el nombre de potencial de acción o impulso nervioso.

La comunicación depende, pues, de que una alteración eléctrica producida en una parte de la célula se desplace hacia otras zonas. Los estímulos o señales capaces de producir el impulso nervioso son muy diferentes, luz, presión, calor, sonido, etc., sin embargo, la forma de transmitirse es siempre la misma; cambios de potencial eléctrico a través de la membrana plasmática de las neuronas.

Poco tiempo después de que la corriente nerviosa haya pasado por un punto determinado de la fibra, esta se recupera, volviendo al potencial de membrana en reposo. Ahora bien, inmediatamente después de propagarse la corriente nerviosa existe un tiempo, que oscila entre 0,5 a 2 milisegundos, en el que no puede transmitirse un nuevo impulso nervioso. Este intervalo de tiempo recibe el nombre de periodo refractario.

Para que un estímulo sea capaz de generar una corriente nerviosa es necesario que posea una determinada intensidad, el estímulo de intensidad mínima capaz de producir la excitación en una fibra nerviosa recibe el nombre de umbral de excitabilidad. Por debajo de este umbral, respondiendo a la ley del «todo o nada», no se produce respuesta y sobrepasado el mismo la respuesta es máxima. No existe, por lo tanto, relación directa entre la intensidad del estímulo y la intensidad de la respuesta.
Por último, no todas las fibras nerviosas poseen el mismo umbral de excitabilidad, requiriendo algunas fibras un estímulo de más intensidad que otras para generar el impulso nervioso.

La propagación, tal como la acabamos de estudiar, se produce solo en las fibras grises o amielínicas. En las fibras blancas, recubiertas de mielina, la transmisión del impulso nervioso salta de un modo de Ranvier al siguiente, es por tanto, una «propagación saltatoria», lo que hace que la transmisión de la corriente nerviosa a través de estas fibras sea mucho más rápida y con menor gasto de energía.

3. ¿Hasta dónde debe llegar el impulso nervioso para que se produzca la secreción del jugo gástrico?
4. ¿Cuál es la naturaleza del impulso nervioso que hace que hables? ¿Y la que hace que algas?
5. ¿Qué diferencia hay entre el potencial de membrana en reposo y en acción?
6. Parece que está demostrado que los perros tienen para el sentido del olfato un umbral de excitabilidad mucho más bajo que el hombre. ¿Qué quiere decir esto?
7. ¿Por qué se dice: la transmisión del impulso nervioso obedece a la «ley de todo o nada»?
8. Reconoce a que corresponden las siguientes definiciones:
 a) Señal capaz de producir un impulso nervioso.
 b) Inversión del potencial eléctrico de la membrana.
 c) Capa oislante de color blanco que rodea a un solo axón.
9. Indica las diferencias anatómicas y fisiológicas entre las fibras mielínicas y amielínicas.

Transmisión del impulso nervioso de una neurona a otra: Sinapsis

Ramón y Cajal, uno de los hombres de ciencia más importantes de este país, obtuvo el premio Nobel en 1908 por descubrir que en el sistema nervioso no existe continuidad física entre el final de una neurona y el comienzo de la siguiente. Sin embargo, el sistema nervioso que está formado por unidades discontinuas, las neuronas, funciona como un todo, lo que nos indica que deben existir conexiones funcionales. Llamamos sinapsis a las conexiones funcionales entre neuronas distintas. En la sinapsis podemos distinguir la zona presináptica de una célula que influye sobre la postsináptica de otra. Entre ambas, existe un espacio que se conoce como hendidura sináptica.

La transmisión del impulso nervioso a través de la sinapsis se realiza de forma indirecta, mediante moléculas que liberan la célula presináptica y que reciben el nombre de neurotransmisores. Los neurotransmisores son mensajeros
químicos que se unen a receptores especiales que posee la membrana de la célula postsináptica provocando en ella un potencial de acción, que como acabamos de ver corre toda la célula.

Así pues, la comunicación de una neurona a otra supone convertir una señal eléctrica en una señal de naturaleza química y transformar de nuevo esta señal química en eléctrica. Veámoslo ahora con un poco más de detalle:

La zona final del axón se divide para formar una multitud de fibras terminales que distribuyen las señales a muchos destinos.

La llegada del impulso nervioso a los extremos del axón produce la descarga de las vesículas presinápticas, que contienen los neurotransmisores, estos se difunden hasta la membrana postsináptica donde se unen a moléculas receptoras específicas.

Como resultado de esta unión se produce un cambio eléctrico en la célula postsináptica, iniciándose en ella un potencial de acción que recorre la neurona. Una vez que han actuado, las moléculas neurotransmisoras deben desaparecer de la zona, para que su efecto no continúe. En unos casos lo hacen difundiéndose en otras zonas más lejadas, y en otros, siendo inactivadas por enzimas específicas.

Los neurotransmisores están siendo muy estudiados en neurología, las dos moléculas más conocidas que actúan como neurotransmisores son la acetilcolina y la noradrenalina. Estas sustancias que actúan desencadenando un potencial de acción en las células postsinápticas son neurotransmisores excitadores, otras moléculas, en cambio, pueden ser neurotransmisores inhibidores, moléculas que al unirse a las membranas postsinápticas mantienen su potencial de reposo o incluso hacen que este potencial sea más negativo.

Así pues, el que una neurona mande su impulso nervioso a otra depende de la naturaleza de los neurotransmisores que segregen sus vesículas presinápticas.

Actualmente se conocen gran cantidad de sustancias que actúan como neurotransmisores, la dopamina es un neurotransmisor excitador de gran significación, que se segrega en determinadas terminaciones sinápticas. Cuando la cantidad segregada es menor a la adecuada se produce la enfermedad de Parkinson, que sufre en general algunas personas de cierta edad y se caracteriza por temblores musculares incontrolados, el exceso de dopamina está relacionado, en cambio, con la enfermedad conocida como esquizofrenia.

Transmisión del impulso nervioso de una neurona a los órganos efectores

La transmisión de la excitación de la fibra nerviosa a los músculos o a las glándulas es muy similar a la que acabamos de ver en la sinapsis. En el caso de las fibras musculares, el axón de la neurona motora acaba en las uniones neu-
Coordinación Humana

romusculares, donde al igual que en la sinapsis no existe contacto físico entre la fibra muscular y el axón. La parte final del axón se ramifica, de manera que cada rama mantiene una unión neuromuscular con una única fibra muscular. En esta zona, la fibra axónica posee gran cantidad de vesículas, que contienen acetilcolina; por otra parte, en la membrana de la fibra muscular se encuentran receptores específicos para dicha hormona. Esta parte de la fibra muscular recibe el nombre de **placa motriz**.

¿Cómo se consigue este efecto. La placa motriz contiene la enzima acetilcolinesterasa que interrumpe la acción de la acetilcolina, impidiendo así su acción prolongada sobre la fibra muscular.

![Imagen de la placa motriz](image)

La acción de algunos venenos, como el curare, de origen vegetal y con el que los indios del Amazonas impregnan sus flechas, se basa en que el curare, debido a su estructura molecular muy parecida a la acetilcolina, la suplanta en los receptores neuromusculares de los músculos esqueléticos. Actúa como una llave falsa que se une a la cerradura, e impide que la auténtica llave —la acetilcolina— abra la conexión entre el impulso nervioso y la contracción de los músculos; de esta forma los músculos que actúan en la respiración se paralizan y la muerte sobrevene por asfixia.

Otros venenos, como el gas **E.605** utilizado en la guerra de gases inhibe la acción de la acetilcolinesterasa. La muerte se produce a los pocos minutos de inhalarlo.

Diagrama de la acetilcolinesterasa y curare

![Diagrama de la acetilcolinesterasa y curare](image)

La acetilcolina se une al acceptor; la acetilcolinesterasa descompone después al transmiador (la acetilcolina). Éste es el proceso normal.

El E605 impide la acción de la acetilcolinesterasa. La acetilcolina no puede descomponerse y los músculos se paralizan.

El curare ocupa en los músculos esqueléticos los lugares del acceptor, e impide que se sitúe en ellos la acetilcolina. Los músculos se paralizan.
Puedes pensar en el complicado instinto de las abejas o de las hormigas.

Los Cefalópodos, como el calamar y el pulpo, pertenecen al phylum Moluscos y son posiblemente, dentro de los animales invertebrados los que poseen un sistema nervioso más complejo. Los lóbulos ópticos, que forman parte de los ganglios cerebrales, están muy desarrollados, lo que permite que sus ojos y su sentido de la vista hayan sido comparados al de los vertebrados.

Este gran desarrollo del sistema nervioso les coloca, junto a los insectos, en un lugar muy avanzado dentro de la escala evolutiva animal.

2 Sistema nervioso de los vertebrados

Los vertebrados son los únicos animales cuyo sistema nervioso está dispuesto en posición dorsal. La tendencia en su evolución les ha llevado a un elevado grado de ceñalización, el mayor en la escala animal. Esta centralización ha posibilitado comportamientos realmente complejos que alcanzan su máximo grado en la clase Mamíferos y en el orden Primates, teniendo en el hombre su máximo exponente.

El cuadro siguiente muestra la complejidad del sistema nervioso de los vertebrados y las partes en que lo podemos dividir:
El sistema nervioso central de los vertebrados, constituido por la médula espinal y el encéfalo, es el encargado de recibir las sensaciones del medio externo, elaborar las respuestas y asociar unas sensaciones con otras. Del desarrollo de nuestro sistema central depende nuestra inteligencia y nuestro conocimiento del mundo exterior.

El sistema nervioso periférico está formado por los nervios sensitivos y motores que llevan información hacia y desde el sistema nervioso central. Las vías motoras, a su vez, se dividen en el sistema somático, que estimula los músculos esqueléticos y el sistema autónomo, que actúa sobre la musculatura lisa, el corazón y las glándulas. Este último sistema se divide de nuevo en el sistema nervioso simpático y en el parasimpático.

Como acabamos de estudiar, las neuronas son las unidades funcionales del sistema nervioso y las células de glía, las que acompañan, ejercen otras funciones complementarias.

Los cuerpos neuronales se agrupan con frecuencia, tanto en vertebrados como en invertebrados, constituyendo los ganglios o los centros nerviosos, en el primer caso estas agrupaciones se encuentran fuera del sistema nervioso central, los centros nerviosos, en cambio, si forman parte del sistema nervioso central.

Los axones o fibras nerviosas también se agrupan formando los nervios, cuando se encuentran fuera del sistema nervioso central, o los tractos, cuando estas agrupaciones se dan en el interior del mismo. Los axones individuales rodeados por vainas de mielina forman los nervios y tractos, que a causa de su color blanquecino se concen como sustancia blanca.

A continuación describimos con más detalle tanto, el sistema nervioso central como el periférico.

2.1. El sistema nervioso central

El sistema nervioso central está formado por la médula espinal y el encéfalo, protegidos respectivamente por las vértebras y el cráneo.

Se origina en las primeras fases del desarrollo embrionario, a partir de una invaginación de la zona dorsal del futuro animal que da lugar a un canal, el surco neural, que acaba por cerrarse formando el tubo neural.

El sistema nervioso está constituido por un sistema tubular, en el curso de cuyo desarrollo sus paredes se ensanchan y alpean progresivamente, dando lugar a la médula espinal y a los distintos centros del encéfalo.
Coordinación Humana

Microfotografía del surco neural (izquierda) y del tubo neural (derecha). Cortesía de Benjamín Fernández. Universidad Complutense de Madrid.

El desarrollo embrionario del tubo neural sigue un proceso uniforme en todos los vertebrados, y es un reflejo de la evolución del sistema nervioso en este grupo de animales. La zona anterior dará lugar al encéfalo, y sufrirá un mayor desarrollo con respecto al resto del tubo neural, que en el futuro animal constituirá la médula espinal.

Podemos decir, que el sistema nervioso en los vertebrados es un sistema tubular cuyas paredes se ensanchan en determinadas zonas, dando lugar a los distintos centros nerviosos. El canal central está relleno de un líquido llamado líquido cefalorraquídeo.

Todo el sistema se encuentra protegido por tres membranas, que reciben el nombre de meninges. Tanto la externa como la interna, que se encuentra en contacto directo con la médula y el encéfalo están muy vascularizadas, de manera que se asegure la irrigación del sistema nervioso.

2.1.1. La médula espinal

Es el cordón nervioso que se encuentra alojado y protegido por la columna vertebral. Dando un corte transversal a la médula podemos diferenciar un conducto central, canal ependimario, rodeado de la sustancia gris que presenta forma de mariposa con las alas extendidas, la sustancia blanca, que constituye la perifería, está formada por fibras nerviosas mielinicas asociadas en paquetes de curso longitudinal. Esta última sustancia es un formidable nervio mixto con fibras que conducen corrientes sensitivas remontantes hacia el encéfalo y fibras efectoras que van a inervar músculos y glándulas.

La médula espinhal posee un surco anterior o ventral y un surco posterior o dorsal. Asimismo, las alas de la sustancia gris reciben el nombre de «astas anteriores o ventrales» y «astas posteriores o dorsales». De las astas de la médula salen los nervios raquídeos, un par de cada vértebra, que forman parte del sistema periférico.

Cerca de las astas posteriores de la médula nace la raíz sensitiva de los nervios raquídeos, y en las astas posteriores, las raíces de los nervios motores. Ambas raíces se unen para formar el nervio raquideo. En la rama sensitiva existe un ganglio raquídeo donde se acumulan los cuerpos neuronales de las células sensitivas.

Desde el punto de vista fisiológico, la médula, debido a la sustancia gris, es un órgano elaborador de actos reflejos, y gracias a la sustancia blanca, posee una función conductora. En esta sustancia blanca se encuentran haces de fibras que acceden hacia las zonas superiores de la misma médula, del cerebro o del cerebelo, y asimismo fibras efectoras que descenden de la corteza cerebral y son responsables de la movilidad de los músculos esqueléticos. En su curso descendente estas fibras se cruzan; las que se originan del lado derecho de la corteza cerebral descienden por el lado izquierdo, de manera que los músculos del lado derecho se mueven por órdenes del hemisferio cerebral izquierdo, y a la inversa.
Acto reflejo

La sustancia gris de la médula espinal junto con los nervios raquídeos del sistema nervioso periférico son la base donde se fraguan los actos reflejos. Un acto reflejo es un acto involuntario y estereotipado, en el que a estímulos concretos se responde siempre con excitaciones concretas. El soporte anatómico del acto reflejo es el arco reflejo.

Los reflejos medulares se producen sin intervención de la conciencia ni de la voluntad, tienen el sello de lo adecuado, ya que tienden a defender al organismo de las condiciones adversas, como por ejemplo, los movimientos defensivos de los ojos.

Un acto reflejo está formado, en los casos más sencillos, únicamente por dos neuronas, una sensitiva y otra motora. Las sensitivas están situadas en los ganglios raquídeos, abultamientos que se encuentran en las raíces posteriores de los nervios raquídeos.

La dendrita sensitiva va a terminar en los receptores y el axón ingresa en la médula haciendo sinapsis con una neurona motora que se encuentra en las astas anteriores de la sustancia gris. El axón de esta segunda célula motora escapa por la raíz anterior y llega al músculo. Estos actos reflejos sencillos como el rotuliano en los que el receptor y el efecto están en el mismo músculo se llaman proprioreflexos.

Otros actos reflejos requieren tres neuronas, una sensitiva y otra motora, conectadas entre sí por una tercera neurona de asociación más pequeña que las motoras.

Muchos actos reflejos son congénitos, soportados por arcos reflejos formados durante el desarrollo embriionario del individuo. El niño al nacer ya sabe mamar, llorar, defecar, vomitar. Estos reflejos también se llaman incondicionados, para distinguirlos de los condicionados, que son los que se adquieren después de nacer, durante el curso de nuestra vida.

El acto reflejo se puede producir de forma consciente o inconsciente, algunos no son percibidos, no notamos en ellos ni la excitación ni la estimulación; por ejemplo, el reflejo pupilar: la pupila se abre o cierra según la cantidad de luz que percibe. Otros son también involuntarios, pero somos conscientes de ellos en la recepción o en la respuesta; por ejemplo, el estornudo, del que somos conscientes aunque incapaces de evitarlo.

Los reflejos condicionados son la base del aprendizaje de todos los animales y también del hombre. El andar en bicicleta, abrocharse los botones, así como la mayoría de los actos que realizamos diariamente, se convierten en actos reflejos después de un tiempo de aprendizaje. Piensa qué ocurriría si cada vez que te atas un zapato tuvieras que pensar o aprender cómo se hace.
El biólogo ruso Paulov realizó numerosas experiencias sobre este tipo de actos reflejos. El método experimental para producirlos consiste, en esencia, en ofrecerle al animal (Paulov trabajó con perros y gatos), junto con el estímulo incondicionado que desencadena el reflejo sensorial, otra impresión sensorial distinta y carente de significado biológico.

Ofrecía al animal alimento, cuyo olor y gusto producen el acto de la insalivación, y a la vez y durante varios días hacía sonar una campana. Al cabo de cierto tiempo, al sonar la campana el perro segregaba saliva sin que hubiera olido ni saboreado la comida. El estímulo inicial del olor y sabor del alimento había sido sustituido por el estímulo acústico sin ninguna relación con el primitivo.

Este tipo de aprendizaje se hace espontáneamente desde el día siguiente al nacimiento. Así el bebé oye el sonido del biberón inmediatamente antes de tomarlo; al cabo de pocos días, al oír este sonido, comienza inmediatamente a producir insalivación.

2.1.2. El encéfalo

El encéfalo es la zona superior de la médula espinal que en esta parte se especializa y dilata, estando protegida por la caja craneana. Posee alrededor de cien billones de neuronas con una concentración de cuerpos neuronales muy alta.

La anatomía del encéfalo es muy complicada. Estudiamos únicamente:

— Bulbo raquideo; — Cerebelo; — Hipotálamo; — Hemisferios cerebrales.

Observa mirando el dibujo anterior que el bulbo raquideo es la prolongación de la médula espinal, que se ensancha dentro de la caja craneana. Es un centro de actos reflejos y un centro de actos automáticos. Los reflejos bulbares son los responsables del funcionamiento del aparato digestivo, de la actividad circulatoria y del llanto, la tos o el vómito, aunque el más importante de los actos automáticos regulados por el bulbo es el de la ventilación pulmonar.

El cerebelo, al que debido a su forma se le conoce también como el «árbol de la vida», interviene en fenómenos como el equilibrio, ya que se encarga de coordinar todos los músculos del organismo. A causa de su función, el desarrollo del cerebelo varía mucho dentro de la escala animal. Así, aparece muy desarrollado en animales cuyos movimientos locomotores son muchos y variados, y es muy reducido en aquellos cuyos movimientos musculares son pobres.
LA ORGANIZACIÓN MODULAR DEL CEREBRO HUMANO

- AUDICIÓN
- TACTO Y GUSTO
- ÁREAS MOTORAS
- ACTIVIDAD INTELECTUAL
- MEMORIA
- RELACIONES ESPACIALES
- LENGUAJE
- CORPO CALLOSO
- (CONEXIÓN ENTRE LOS DOS HEMISFERIOS CEREBRALES)
- TÁLAMO (DISTRIBUCIÓN DE IMPULSOS NERVIOSOS A LOS DIFERENTES ÓRGANOS DEL ENCEFALO)
- HIPÓTÁLAMO (CENTRO INTEGRADOR EN VÉGETATIVO -SENSACIONES BÁSICAS: HAMBRE, SED, DESEO... -NEXO DE UNIÓN CON EL SISTEMA ENDOCRINO)
- HIPÓFISIS (SISTEMA ENDOCRINO)
- PUENTE DE VAROLIO (CONEX. CEREBELO)
- TALLO ENCEFÁLICO
- MÉDULA ESPINAL
- BULBO RAQUÍDEO -CONTROL DE FUNCIONES INVOLUNTARIAS (RITMO CARDÍACO, VENTILACIÓN PULMONAR, DEGLUCIÓN, VASODILATACIÓN, VASOCONSTRICCIÓN...)
- CEREBELO -CONTROL DEL EQUILIBRIO -CONTROL DE MOVIMIENTOS REPETITIVOS PREVIAMENTE APRENDIDOS

Coordinación Humana
El **hipotálamo** regula presión sanguínea, la alternancia de vigilia y sueño, la actividad renal y la temperatura del cuerpo. Es además, el centro principal para la integración del sistema nervioso y el endocrino, y regula la secreción de la hipófisis que, a su vez, influye sobre el resto de las glándulas endocrinas, como veremos más tarde.

Los **hemisferios cerebrales**, constituyen lo que conocemos como el cerebro, su tamaño es muy grande con respecto a otras partes del encéfalo. Este incremento alcanza el máximo desarrollo en el hombre, en el que el área superficial de las circunvoluciones cerebrales aumenta extraordinariamente. El cerebro contiene 10,000 millones de neuronas, que forman entre sí billones de interconexiones.

Los hemisferios cerebrales son los grandes centros asociativos donde se proyectan los órganos sensoriales y los efectores. Aquí se relacionan unos con otros los centros sensoriales, a la vez que lo hacen también con centros motores.

Al desarrollo de este órgano se debe la superioridad de los mamíferos sobre el resto de los vertebrados, superioridad que culmina en el orden primates. En la corteza cerebral residen las propiedades psíquicas de cada individuo y los mecanismos responsables de los actos reflejos condicionados. Estas funciones, gracias a las cuales el hombre logró tener conocimiento del mundo externo, crear conceptos y desarrollar cualidades mentales, tienen lugar en una zona de gran extensión de la corteza cerebral, en ella está proyectado el cuerpo en su aspecto sensitivo y motriz. Comprueba lo que acabamos de decir en el esquema que aparece al pie de la página.

Para terminar estudia el cuadro siguiente, que resume de forma gráfica las principales funciones de los distintos órganos del encéfalo.

<table>
<thead>
<tr>
<th>ÓRGANO</th>
<th>FUNCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEMISFERIOS CEREBRALES</td>
<td>CENTROS MOTRICES PRIMARIOS</td>
</tr>
<tr>
<td></td>
<td>CENTROS SENSORIALES PRIMARIOS</td>
</tr>
<tr>
<td></td>
<td>CENTROS SENSORIALES SECUNDARIOS</td>
</tr>
<tr>
<td></td>
<td>CENTROS MOTRICES SECUNDARIOS</td>
</tr>
<tr>
<td></td>
<td>HIPÓFISIS</td>
</tr>
<tr>
<td></td>
<td>BULBO RAQUIDEO</td>
</tr>
<tr>
<td></td>
<td>ACTOS AUTOMÁTICOS</td>
</tr>
</tbody>
</table>

![Localización en la corteza cerebral de varios de los centros motores y sensoriales primarios, en relación a las diferentes partes del cuerpo.](image)
Aplica tus conocimientos ante nuevas situaciones

1. Como muy bien sabes, el sistema nervioso nos permite recibir sensaciones del medio externo y procesar respuestas motoras ante diferentes estímulos.

2. ¿Cuál es el estímulo que te permite ver al toro?
3. ¿Cuál es el receptor? Segundo lugar.

5. Como gesto natural, y en primer lugar.

7. ¿Por qué una persona al desnudarse, o un animal al que se le da la "puntilla" muere de forma instantánea? ¿Qué región del cerebro ha sufrido el impacto? ¿Qué funciones tiene esta región?

8. ¿Quién poseerá un cerebelo más desarrollado, un sapo o un poderoso y agil tiburón? Podrías indicar los trastornos que padecerían las personas con una grave lesión en el cerebelo?

Relaciona causas con efectos y viceversa

5. Desde el punto de vista fisiológico los nervios se dividen en:
 - sensitivos,
 - motores y
 - mixtos.

6. Si a un animal se le produce la ablation (destrucción) de la raíz anterior de un nervio raquideo, ¿le afectará a la sensibilidad a o a la motilidad de una determinada zona de su cuerpo?

Coordinación Humana

2.2. Sistema nervioso periférico

El sistema nervioso periférico está formado por los nervios que salen del encéfalo y de la médula espinal y que se distribuyen y ramifican para terminar en los diversos tejidos y órganos del cuerpo.

Estos nervios, que se clasifican en: sensitivos, motores y mixtos, no están, al contrario de lo que ocurre en el sistema nervioso central, protegidos por el esqueleto.

Los nervios sensitivos, que forman el sistema periférico sensorial, transportan señales del exterior hacia el interior, los motores lo hacen a la inversa del interior al exterior, y los mixtos poseen tanto fibras sensitivas como motoras.

Si estos nervios conectan directamente con el encéfalo reciben el nombre de nervios craneales, mientras se denomina nervios espinales o raquideos los que conectan con la médula espinal.

Existen 12 pares de nervios craneales y 31 de nervios espinales o raquideos, que como ya has estudiado salen de los laterales de la médula espinal y lo hacen precisamente a través de los espacios intervertebrales.
El sistema periférico motor se divide en el sistema somático y en el autónomo. El primero que es un sistema «voluntario» controla los músculos esqueléticos que podemos mover a voluntad. El sistema nervioso autónomo controla los músculos lisos o involuntarios. Los cuerpos celulares de los axones que inervan ambos tipos de músculos se encuentran en el sistema nervioso central, pero mientras los del sistema somático llegan directamente a los músculos esqueléticos los del sistema autónomo hacen una «parada» para conectar con neuronas motoras que se encuentran fuera del sistema nervioso central y cuyas prolongaciones llegan a los órganos efectores (músculos y glándulas).

El sistema nervioso autónomo, también llamado sistema nervioso visceral o de la vida vegetativa, está formado por un sistema especial de nervios periféricos que funcionan al margen de la conciencia y de la voluntad. El cerebro no posee, por tanto, dominio sobre ellos. No podemos, por ejemplo, modificar voluntariamente la actividad de nuestro tubo digestivo, ni controlar la secreción de las glándulas sudoríparas, que se encuentran bajo el control del sistema nervioso autónomo.

Desde el punto de vista funcional se divide en dos sistemas que actúan de forma antagónica: el sistema nervioso simpático y el sistema nervioso parasimpático. El símbolo → indica que acelera y el ○ que atempera.

Doble inervación de los órganos por el sistema nervioso simpático y parasimpático. El símbolo → indica que acelera y el ○ que atempera.

El corazón, por ejemplo, está inervado por una rama del simpático que acelera el ritmo cardíaco, y otra del parasimpático que lo atempera. Lo contrario ocurre con el tubo digestivo, el parasimpático estimula los movimientos peristálticos y las secreciones de las glándulas digestivas y el simpático las frena. Podemos concluir, pues, que en determinados órganos el sistema nervioso simpático es estimulado y el parasimpático atemperador y en otros al contrario.

Una excepción a esta doble inervación la constituyen las glándulas sudoríparas y los músculos horripiladores que solo poseen inervación simpática, estos músculos horripiladores son los responsables de la «carne de gallina» en el hombre y de que se ericen los pelos de los mamíferos cuando estos se defienden o atacan.

Hemos visto que los dos sistemas, simpático y parasimpático que constituyen el sistema nervioso autónomo son antagónicos y que en determinados casos el simpático es estimulador de un órgano y en otros atemperador, ocurriendo lo mismo con el parasimpático.
Coordinación Humana

A primera vista puede parecer que no hay regla fija en el modo de actuación de estos sistemas, pero si examinamos el sentido biológico de estos actos se descubre una regla llena de lógica, y es que la función del sistema nervioso autónomo consiste en tratar de mantener constantes las condiciones del medio, incluso en momentos de ataque al organismo. Existe, de acuerdo con este criterio una división de trabajo clara entre el sistema simpático y el parasimpático. El simpático eleva las facultades del trabajo del organismo, con el aumento del consumo de energía consiguiente. El parasimpático, al contrario, entraña fenómenos de relajamiento o recuperación, con acumulación de energía.

Gracias a estos proceso, cuando un mamífero se encuentra en cualquiera de estos estados, el cuadro biológico se adapta a la situación correspondiente.

Pensemos, por ejemplo, en una hembra de guepardo o de león que se encuentra descansando tranquila con su cría, cuando bruscamente aparece en las cercanías una gacela desorientada. Su instinto de cazadora la hace cambiar su cuadro biológico rápidamente del parasimpático al simpático, el corazón que latía lentamente aumenta sus pulsaciones y bombea más sangre, los bronquios se dilatan de manera que llegue más aire a sus pulmones y aumente así el oxígeno que alcanza a las células; el hígado, bajo el influjo del simpático, moviliza su glucógeno y vierte glucosa a la sangre, glucosa que desde la sangre llega a los músculos, intensificándose la respiración celular y las disponibilidades de energía para propiciar la persecución de la presa. Paralelamente la piel del animal recibe impresiones simpáticas que erizan sus pelos, la pupila se dilata y el ojo parece salirse de sus órbitas, lo que permite al animal una mayor agudeza visual.

En la especie humana, las emociones también desvían el cuadro fisiológico hacia el sistema nervioso simpático, produciéndose en nuestro organismo una serie de cambios que tu también habrás notado en más de una ocasión.

El centro general que rige el cambio rápido de ritmo entre el sistema simpático y el parasimpático es el hipotálamo, al que podemos considerar como el director de la vida vegetativa, de él dependen el sueño, la ira, la digestión y otras muchas funciones de este tipo.

En la médula de las cápsulas suprarrenales se segrega una hormona, la adrenalina, también llamada hormona de la emoción, existiendo una relación estrecha entre esta molécula y el sistema nervioso simpático, ya que las terminaciones axónicas de este sistema nervioso segregan esta sustancia y otra muy semejante, tanto en su composición como en su efecto biológico, la noradrenalina. Se ha demostrado que algunas terminaciones simpáticas segregan adrenalina y otras noradrenalina en la relación de uno a nueve. Los extremos axónicos del sistema nervioso periférico segregan, en cambio, acetilcolina.
Coordinación Humana

Identifica y colorea

Colorea las distintas partes del:

a) Sistema nervioso central

- *Encéfalo*
 - Cerebro: a
 - Bulbo raquideo: b
 - Cerebelo: c
 - Médula espinal: d

b) Sistema nervioso periférico

- Nervios craneales: e (12 pares)
- Nervios espinales: f (31 pares)